Circum-Euclidean distance matrices and faces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean and circum-Euclidean distance matrices: Characterizations and linear preservers

Short proofs are given to various characterizations of the (circum-)Euclidean squared distance matrices. Linear preserver problems related to these matrices are discussed.

متن کامل

Ela Euclidean and Circum-euclidean Distance Matrices: Characterizations and Linear Preservers

Short proofs are given to various characterizations of the (circum-)Euclidean squared distance matrices. Linear preserver problems related to these matrices are discussed.

متن کامل

On Euclidean distance matrices

If A is a real symmetric matrix and P is an orthogonal projection onto a hyperplane, then we derive a formula for the Moore-Penrose inverse of PAP . As an application, we obtain a formula for the MoorePenrose inverse of a Euclidean distance matrix (EDM) which generalizes formulae for the inverse of a EDM in the literature. To an invertible spherical EDM, we associate a Laplacian matrix (which w...

متن کامل

Euclidean Distance Matrices and Applications

Over the past decade, Euclidean distance matrices, or EDMs, have been receiving increased attention for two main reasons. The first reason is that the many applications of EDMs, such as molecular conformation in bioinformatics, dimensionality reduction in machine learning and statistics, and especially the problem of wireless sensor network localization, have all become very active areas of res...

متن کامل

Properties of Euclidean and Non-Euclidean Distance Matrices

A distance matrix D of order n is symmetric with elements idfj, where d,, = 0. D is Euclidean when the in(n 1) quantities dij can be generated as the distances between a set of n points, X (n X p), in a Euclidean space of dimension p. The dimensionality of D is defined as the least value of p = rank(X) of any generating X; in general p + 1 and p +2 are also acceptable but may include imaginary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1996

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)00031-x